The smallest covering code of length 8 and radius 2 has 12 words
نویسندگان
چکیده
We prove that the smallest covering code of length 8 and covering radius 2 has exactly 12 words. The proof is based on partial classi cation of even weight codewords, followed by a search for small sets of odd codewords covering the part of the space that has not been covered by the even subcode.
منابع مشابه
Improved lower bounds for multicovering codes
The m-covering radius of a code is a recent generalization of the covering radius of a code. It is the smallest t such that every m-tuple of vectors is contained in a ball of Hamming radius centered at some codeword. We derive new lower bounds for the size of the smallest code that has a given length and m-covering radius.
متن کاملThe covering radius of cyclic codes of length up to 31
Remark 4: The author is unable to deal analytically with the general case of p + l/2 where one does not have the property of symmetry. However, the case that p is close to l/2 may be tractabie an9 interesting. Linear smoothing using measurements containing correlated noise with an application to inertial navigation, " IEEE Trans. Abstract-The covering radius is given for all binary cyclic codes...
متن کاملNew Bounds for Linear Codes of Covering Radius 2
The length function lq(r,R) is the smallest length of a q-ary linear code of covering radius R and codimension r. New upper bounds on lq(r, 2) are obtained for odd r ≥ 3. In particular, using the one-to-one correspondence between linear codes of covering radius 2 and saturating sets in the projective planes over finite fields, we prove that
متن کاملThe remoteness of the permutation code of the group $U_{6n}$
Recently, a new parameter of a code, referred to as the remoteness, has been introduced.This parameter can be viewed as a dual to the covering radius. It is exactly determined for the cyclic and dihedral groups. In this paper, we consider the group $U_{6n}$ as a subgroup of $S_{2n+3}$ and obtain its remoteness. We show that the remoteness of the permutation code $U_{6n}$ is $2n+2$. Moreover, ...
متن کاملOn Steganographic Embedding Efficiency
In this paper, we study embedding efficiency, which is an important attribute of steganographic schemes directly influencing their security. It is defined as the expected number of embedded random message bits per one embedding change. Constraining ourselves to embedding realized using linear covering codes (so called matrix embedding), we show that the quantity that determines embedding effici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 52 شماره
صفحات -
تاریخ انتشار 1999